A ribosome profiling study of mRNA cleavage by the endonuclease RelE

نویسندگان

  • Jae-Yeon Hwang
  • Allen R. Buskirk
چکیده

Implicated in persistence and stress response pathways in bacteria, RelE shuts down protein synthesis by cleaving mRNA within the ribosomal A site. Structural and biochemical studies have shown that RelE cuts with some sequence specificity, which we further characterize here, and that it shows no activity outside the context of the ribosome. We obtained a global view of the effect of RelE on translation by ribosome profiling, observing that ribosomes accumulate on the 5'-end of genes through dynamic cycles of mRNA cleavage, ribosome rescue and initiation. Moreover, the addition of purified RelE to cell lysates shows promise as a method for generating ribosome footprints. In bacteria, profiling studies have suffered from relatively low resolution and have yielded no information on reading frame due to problems inherent to MNase digestion, the method used to degrade unprotected regions of mRNA. In contrast, we find that RelE yields precise 3'-ends that for the first time reveal reading frame in bacteria. Given that RelE has been shown to function in all three domains of life, RelE has potential to improve reading frame and shed light on A-site occupancy in ribosome profiling experiments more broadly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structural Basis for mRNA Recognition and Cleavage by the Ribosome-Dependent Endonuclease RelE

Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 A) and bound to progra...

متن کامل

Mechanism of endonuclease cleavage by the HigB toxin

Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challen...

متن کامل

Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why Rel...

متن کامل

Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant.

A 249-nucleotide coding region instability determinant (CRD) destabilizes c-myc mRNA. Previous experiments identified a CRD-binding protein (CRD-BP) that appears to protect the CRD from endonuclease cleavage. However, it was unclear why a CRD-BP is required to protect a well-translated mRNA whose coding region is covered with ribosomes. We hypothesized that translational pausing in the CRD gene...

متن کامل

Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.

The life span of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here we investigate the endonucleolytic function of Ago2 and other nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017